
Proceedings of ETBMIT:IC-2017 ISBN-978-93-82529-08-8 Page 124

―Cohesion Techniques& Its Analysis using

LCOM4‖

Dr. Ashish Jolly
#1

, Mr. Shakti Kumar
*2

#
Department of Computer Science ,Govt. College Barwala (Panchkula), Haryana, India

e-mail:ashishjolly76@gmail.com
*
Department of Computer Science, Govt. P. G. College Ambala Cantt ,Haryana, India

e-mail-shaktikumarbajpai@gmail.com

Abstract—designing complex software at once is difficult

but if we divide the problem into parts or modules then

it will be easier to manage the whole project. Once the

module are considered it is important to understand

inter as well as intra module dependency. Cohesion

refers to the degree to which the elements of the modules

belong together. Coupling defines the dependency of one

module on one or more other modules.In a good design

methodology more cohesion is required while coupling

should be as low as possible. Different types of coupling

are available from which some are desirable while the

design of the software.

Keywords—software coupling; cohesion ; Complexity

Analysis; Dependency; Comparision.

 INTRODUCTION

When we develop the software at once is difficult and

time consuming. So in order to reduce complexity we

build the project in parts or modules, such a design

technique is known as modular design techniques.

When we design software using modules reduces the

overall complexity of software development. Once the

modules are being designed they are connected

together to form the overall system. The connectivity

is done in such a manner so that coupling is less and

cohesion is more.

COHESION AND ITS TYPES

Cohesion is the degree to which elements inside a

module belong to each other. In cohesion we consider

the statements inside the given module and the way

they all are working together to achieve a specific

goal. Types of cohesion are given below

Coincidental cohesion

It occurs due to arbitrary grouping of parts for

module.This kind of cohesion is considered as worst,

it is because the elements are just kept together inside

the module without considering their contribution to

module.

Logical cohesion

In Logical cohesion the parts of module are
grouped together because logically they are

performing same job even when they are different by
nature for example functionality of keyboard and
mouse vary but they both can be logically grouped
inside the module designed to accept input from the
user.

Temporal cohesion

Temporal cohesion occurs when the parts of a given

module are processed at a particular instance of time

when the program is executing in the memory For

example when an exception is caught then error is

reported to user and error log is also created.

Procedural cohesion

The parts or statements of a program which are

grouped under this cohesion have to follow a given

sequence. For example before displaying the contents

of a file we must first ensure that the read permissions

are provided for the same.

Communicational cohesion

Only those parts which operate the same data are kept

under communicational cohesion.

Sequential cohesion

This cohesion groups those parts together in which

output of one part is considered as input of the other

part.

Functional cohesion

This cohesion is considered as best because all the

parts of the module contribute to a single well defined

task.

LCOM4 A COHESION METRIC

Cohesion metrics helps us to find out how well the

methods of a class are related to each other. A

cohesive class performs one function while non

cohesive class performs more than one function which

are totally unrelated.

A. Lack of cohesion of methods(LCOM)

There are several LCOM ‗lack of cohesion of
methods‘ metrics. There are four variants: LCOM1,
LCOM2, LCOM3 and LCOM4.The LCOM1,LCOM2
& LCOM3 are used for various object oriented
languages while LCOM4 is used for Visual Basic

Proceedings of ETBMIT:IC-2017 ISBN-978-93-82529-08-8 Page 125

systems. LCOM4 is considered best because it
considers property accessors.

B. LCOM4 (Hitz&Montazeri) recommended metric

LCOM4 is the lack of cohesion metric we recommend

for Visual Basic programs. LCOM4 measures the

number of "connected components" in a class. A

connected component is a set of related methods.

There should be only one such a component in each

class. If there are two or more components, the class

should be split into so many smaller classes.

In the measure of LCOM4 Methods a and b are related

if:

1. they both access the same class variable, or

2. a calls b, or b calls a.

After determining the related methods, we draw a

graph linking the related methods to each other.

LCOM4 equals the number of connected groups of

methods.

 LCOM4=1 indicates a cohesive class, which

is the "good" class.

 LCOM4>=2 indicates a problem. The class

should be split into so many smaller classes.

 LCOM4=0 happens when there are no

methods in a class. This is also a "bad" class

For Example Consider a class DEMO with

A(),B(),C(),D() & E() as five methods and x,y as two

data members.

DEMO

+x:int

+y:int

+A():void

+B():void

+C():void

+D():void

+E():void

Fig1.class diagram

In the DEMO class method A() access method B()

which in turn access data member x. Method C()

access the data member y while method D() access

both method E() and data member y as shown in

figure 2.

 Fig.2 Relationship between data member and

methods

The above class contains two unrelated components so

LCOM4=2. So in order to make the class more

cohesive we have two solutions first is we should

break it into two parts and they are {A,B,x} and

{C,D,E,y} as given below so that both the parts will

have value of LCOM4=1

 Fig.3 Improving LCOM metric by splitting the

class

The other solution is to provide a relationship between

C() and x so that LCOM value gets improved and

leads to more cohesive design as shown in Figure 4.

 Fig.4 providing more cohesive design for the given

class

Consider a class that encapsulates 3 variables and

provides 3 properties to access each of these 3

variables. Such a class displays low cohesion, even

though it is well designed. The class could well be

split into 3 small classes, yet this may not make any

sense.

CONCLUSION

After analysis of various cohesion techniques we

observed that High cohesion is desirable since it

promotes encapsulation. As a drawback, a highly

cohesive class has high coupling between the methods

of the class, which in turn indicates high testing effort

for that class.Low cohesion indicates inappropriate

design and high complexity. It has also been found to

indicate a high likelihood of errors. The class should

probably be split into two or more smaller classes

.

REFRENCES

[1] James M. Bieman and Byung-Kyooh Kang ―Cohesion

and reuse in an object-oriented system‖, ACM Press
New York, NY, USA, Pages: 259 – 262, 1995.

A()

B()

x

C() D()

E()

y

A()

B()

x

C() D()

E()

y

A()

B()

x

C() D()

E()

y

Proceedings of ETBMIT:IC-2017 ISBN-978-93-82529-08-8 Page 126

[2] Mathew Cochran,‖Coding Better: Using Classes
VsInterfaces‖,January 18th, 2009.

[3] Krishnapriya, Dr. K. Ramar, ―Exploring the Difference
between
Object Oriented Class Inheritance and Interfaces Using
Coupling
Measures‖, 2010 International Conference on Advances
in Computer
Engineering, 978-0-7695-4058-0/10 $26.00 © 2010
IEEE.

[4] McCabe and Associates, Using McCabe QA 7.0, 1999,
9861Broken Land Parkway 4th Floor Columbia, MD
21046.

[5] McCabe, T. J., ―A Complexity Measure‖, IEEE
Transactions on Software Engineering, SE 2(4), pages
308- 320, December 1976.

[6] Lorenz, Mark & Kidd Jeff, Object-Oriented Software
Metrics, Prentic, Hall, 1994.

[7] Rosenberg, L., and Hyatt, L., ―Software Quality Metrics
for Object- Oriented System Environments‖, Software
assurance Technology Center, Technical Report SATC-
TR-95-1001,NASA Goddard Space Flight Center,
Greenbelt, Maryland 20771.

[8] Rene Santaolaya Salgado, Olivia G. Fragosco Diaz,
Manuel A. Valdes Marrero, Issac M. Vaseuqz Mendez
and Shiela L. Delfin Lara, ―Object Oriented Metric to
Measure the Degree of Dependency Due to Unused
Interfaces‖, ICCSA 2004, LNCS 3046, P.No: 808-
817,2004 @ Springer, Verlag Berlin Heidelberg.

[9] http://en.wikipedia.org/wiki/Object-oriented
programming.

[10] Marcela Genero, Mario Piattini and Coral Calero,― A
Survey of Metrics for UML Class Diagrams‖, in Journal
of Object Technology,Vol. 4, No. 9, Nov-Dec 2005.

[11] Marcela Genero, Mario Piattini and Coral Calero,― A
Survey of Metrics for UML Class Diagrams‖, in Journal
of Object Technology, Vol. 4, No. 9, Nov-Dec 2005.

[12] Karhikeyan, J. Geetha ―A Metrics Suite and Fuzzy
Model for Measuring Coupling in Service Oriented
Architecture‖IEEE2012 International Conference on
Recent Advances in Computing and Software Systems
page no.254-259.

[13] SelimKebir, Abdelhak-DjamelSeriai, Sylvain Chardigny
and AllaouaChaoui ―Quality-Centric Approach for
Software Component Identification from Object-
Oriented Code‖IEEE 2012 Joint Working Conference on
Software Architecture & 6th European Conference on
Software Architecture page no. 181-190.

